Flow-enhanced solution printing of all-polymer solar cells
نویسندگان
چکیده
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.
منابع مشابه
Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells
In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...
متن کاملEffect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملOrganic Solar Cells
MRS BULLETIN • VOLUME 33 • JULY 2008 • www.mrs.org/bulletin Abstract Organic solar cells, based on polymer/fullerene-blend films, are advancing rapidly toward commercial viability. In this article, we review recent progress on two issues critical for technological applications: device photovoltaic efficiencies and processing technologies for high-throughput production. In terms of device effici...
متن کاملSolar Paint: From Synthesis to Printing
Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. In this paper, we review progress in the field of nanoparticu...
متن کاملEnabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging
The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate comprises a fully scalable
متن کامل